Reactions of Cp * $\operatorname{Ir}(2,5$-dimethylthiophene) with electrophiles, acids, and maleic anhydride

Jiabi Chen ${ }^{1}$, Robert J. Angelici *
Ames Laboratory and Department of Chemistry, Iowa State University, Ames IA 50011, USA

Received 17 August 2000; accepted 18 September 2000
Dedicated to Professor Henri Brunner on the occasion of his 65th birthday

Abstract

This paper describes reactions of the two isomers $\left(\eta^{5}-\mathrm{Cp}^{*}\right) \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (1) and $\left(\eta^{5}-\mathrm{Cp}{ }^{*}\right) \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2), where $2,5-\mathrm{Me}_{2} \mathrm{~T}$ is 2,5 -dimethylthiophene, with several electrophiles, acids, and maleic anhydride. The reactions of $\mathbf{1}$ and $\mathbf{2}$ with methyl iodide give the same product $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)^{+}$in which the CH_{3}^{+}is bonded to the sulfur atom, as established by X-ray studies. The reaction of $\mathbf{1}$ with maleic anhydride gives two structurally characterized products: $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left[\eta^{1}(S)-\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\right.\right.$ $\left.\left.\mathrm{Me}_{2} \mathrm{~T}\right)\right]\left[\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{3}\right](\mathbf{1 3})$, in which S -coordinated $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ and η^{2}-maleic anhydride are ligands to the Cp *Ir unit, and another product (12) that has the composition of 13 except for one additional oxygen atom. Complex 12, with a complicated and unusual structure, is also isolated from the reaction of maleic anhydride and the acylthiolate $\mathrm{Cp}^{*} \operatorname{Ir}\left[\eta^{4}-\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{MeC}(=\mathrm{O}) \mathrm{Me}\right]$ (14). Reactions of $\mathbf{1}$ and $\mathbf{2}$ with a variety of other agents ($\mathrm{MeS}-\mathrm{SMe}_{2}^{+}, \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{EtOH}$ and I_{2}) are also described. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Iridium complexes; Hydrodesulfurization; Maleic anhydride; Thiophene; Pentamethylcyclopentadienyl

1. Introduction

In studies of the coordination and reactions of thiophenes in transition metal complexes, we observed [13] that a two-electron reduction of $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{5}-2,5-\right.$ $\left.\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}$ converts the $\eta^{5}-2,5$-di-methylthiophene (2,5$\mathrm{MeT})$ ligand to a $\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand in $\mathrm{Cp}{ }^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\right.$ $\mathrm{Me}_{2} \mathrm{~T}$) (1), which in the presence of bases or light rearranges to the ring-opened $\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2) isomer Eq. (1).

[^0]Although $\mathbf{1}$ and $\mathbf{2}$ have been shown to exhibit a range of reactivities [4], there are a few that are particularly relevant to the studies reported in this paper. Lewis acids (A) commonly react with both $\mathbf{1}$ and $\mathbf{2}$ to give adducts [4] in which the Lewis acid adds to the strongly donating sulfur atom of $\mathbf{1 ~ E q}$. (2). (In its reactions with Lewis acids, isomer 2 rearranges to $\mathbf{1}$ during adduct formation.)

In this paper are described reactions of $\mathbf{1}$ and $\mathbf{2}$ with electrophiles (MeI and $\mathrm{MeS}-\mathrm{SMe}_{2}^{+}$) and Bronsted acids $\left(\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{~S}\right.$, and EtOH$)$ which sometimes give adducts of the type in Eq. (2), but often give other products.

Oxidative addition of H_{2} to $\mathbf{1}$ and 2 yields [5] the dihydride product $\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(\mathrm{H})_{2}$ (Eq. (3)). We find in the present studies that 2 reacts oxidatively with I_{2}, but a quite different type of product is formed.

In earlier investigations [6] of reactions of $\mathbf{1}$ and 2 with olefins and acetylenes, we observed that there were no reactions between $\mathbf{1}$ and $\mathbf{2}$ and 1-hexene, 1,3-cyclohexadiene, 1,3-cyclooctadiene, phenylacetylene, diphenylacetylene, and 3-hexyne. However, the thioether alkynes ($\mathrm{MeS}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Y}$) did react with $\mathbf{1}$ and 2 to give bicyclocarbene products of the type shown in Eq. (4). The sulfur atom

clearly plays an important role in these reactions. The only other alkyne that reacted with 2 was $\mathrm{MeO}_{2} \mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$. While it yielded a pure product with the composition $\mathrm{Cp} * \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right) \cdot 4 \mathrm{MeO}_{2}-$ $\mathrm{C}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CO}_{2} \mathrm{Me}$, it could not be characterized crystallographically. As the electron-withdrawing ester groups appeared to activate this alkyne for reaction with 1 and $\mathbf{2}$, we examined the reactions of $\mathbf{1}$ and $\mathbf{2}$ with maleic anhydride, an olefin with an electron-withdrawing anhydride group. Indeed, these reactions lead to some surprising products which are described herein.

2. Experimental

2.1. General procedures

All reactions were carried out using standard Schlenk techniques in an atmosphere of purified nitrogen. All solvents were reagent grade and dried by refluxing over appropriate drying agents and stored over $4 \AA$ molecular sieves under an N_{2} atmosphere. Diethyl ether $\left(\mathrm{Et}_{2} \mathrm{O}\right)$ was distilled from potassium benzophenone ketyl; hexanes and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from CaH_{2}. EtOH was distilled from magnesium ethoxide. Maleic anhydride, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}, \mathrm{CH}_{3} \mathrm{I}$, and I_{2} were purchased from 3 M , Fisher Scientific, and Eastman Kodak, respectively. The gases HCl and $\mathrm{H}_{2} \mathrm{~S}$ were used as purchased. $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-\right.$ 2,5- $\mathrm{Me}_{2} \mathrm{~T}$) (1) [2,3], $\mathrm{Cp}^{*} \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2) [1,2], $\left[\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)\right]\left(\mathrm{BF}_{4}\right) \quad[7]$, and $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-\right.$ $\mathrm{SC}_{3} \mathrm{H}_{2} \mathrm{MeC}(=\mathrm{O}) \mathrm{Me}$ [8] were prepared as previously reported. $\mathrm{Li}\left(\mathrm{NPr}_{2}^{\mathrm{i}}\right)$ [9] and $\left(\mathrm{MeS}-\mathrm{SMe}_{2}\right) \mathrm{BF}_{4}$ [10] were prepared by literature methods. Elemental analyses
were performed by the Galbraith Laboratory or the Shanghai Institute of Organic Chemistry. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra were recorded on a Nicolet NT-300 spectrometer in solutions of CDCl_{3} with CHCl_{3} as the internal reference. Electron ionization mass spectra (EIMS) were run on a Finnigan 4000 spectrometer. The fast atom bombardment (FAB) spectra were run on a Kratos MS-50 mass spectrometer using a 3-nitrobenzyl alcohol- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ matrix.

2.2. Reaction of $\mathrm{C} p^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} T\right)$ (1) with $\mathrm{CH}_{3} \mathrm{I}$ to give $\left[C p^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)\right] I$ (3)

To a stirred solution of $1(0.030 \mathrm{~g}, 0.068 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ was added $0.50 \mathrm{ml}(1.14 \mathrm{~g}, 8.03 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$. The solution was stirred at room temperature (r.t.) for 10 h during which time the light yellow solution gradually turned orange. After vacuum removal of the solvent, the remaining residue was recrystallized from hexane $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-25^{\circ} \mathrm{C}$ to give 0.025 g (63%, based on 1) of white crystalline 3 (m.p. (dec.) $118-120^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.07(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}$, $3 \mathrm{H}), 2.03(\mathrm{~s}, 15 \mathrm{H}), 1.59(\mathrm{~s}, 6 \mathrm{H})$. EIMS: m/e $582\left[\mathrm{M}^{+}\right]$, $455\left[\mathrm{M}^{+}-\mathrm{I}\right], 440 \quad\left[\mathrm{M}^{+}-\mathrm{CH}_{3} \mathrm{I}\right]$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{26}$ ISIr: C, $35.91 ; \mathrm{H}, 4.51$. Found: C, $35.96 ; \mathrm{H}$, 4.30%.

2.3. Reaction of $\mathrm{Cp}^{*} \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ (2) with $\mathrm{CH}_{3} \mathrm{I}$ to give 3

A $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{ml})$ solution of $0.020 \mathrm{~g}(0.045 \mathrm{mmol})$ of $\mathbf{2}$ was treated, as above for the reaction of $\mathbf{1}$ with $\mathrm{CH}_{3} \mathrm{I}$, with $0.50 \mathrm{ml}(1.14 \mathrm{~g}, 8.03 \mathrm{mmol})$ of $\mathrm{CH}_{3} \mathrm{I}$ to give 0.014 $\mathrm{g}(54 \%$, based on 2) of white crystalline 3 which was characterized by its m.p. and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

2.4. Reaction of $\mathbf{3}$ with $\operatorname{Li}\left(\mathrm{NPr}_{2}^{i}\right)$ to give
 $C p^{*} \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{TCH}_{2}\right)$ (4)
 (4)

To a solution of $\mathbf{3}(0.045 \mathrm{~g}, 0.077 \mathrm{mmol})$ in THF (20 ml) was added a fresh $\mathrm{Li}\left(\mathrm{NPr}_{2}^{\mathrm{i}}\right)$ solution prepared by the reaction of $\mathrm{HNPr}_{2}^{\mathrm{i}}(0.009 \mathrm{~g}, 0.089 \mathrm{mmol})$ with $n-\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}(0.048 \mathrm{ml}$ of 2.26 M solution, $\sim 0.089 \mathrm{mmol})$ in 5 ml of THF at $-30^{\circ} \mathrm{C}$. The light yellow solution immediately turned green. The mixture was stirred at -30 to $0^{\circ} \mathrm{C}$ for 4 h during which time the solution gradually turned from green to dark orange. After vacuum removal of the solvent, the residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:1) as the eluent. An orange band was eluted and collected. The solvent was removed in vacuo, and the residue was recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ to give $0.018 \mathrm{~g}(51 \%$, based on 3) of red crystalline 4 (m.p. (dec.) $190-191^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 7.69(\mathrm{dd}, 1 \mathrm{H}), 7.52(\mathrm{dd}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.98$
(s, 3H), $1.72(\mathrm{~s}, 15 \mathrm{H}) . \mathrm{MS}: m / e 454\left[\mathrm{M}^{+}\right], 440\left[\mathrm{M}^{+}-\right.$ CH_{2}]. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{25}$ SIr: C, 45.01 ; $\mathrm{H}, 5.55$. Found: C, 44.68; H, 5.78\%.

2.5. Reaction of $\left[C p^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} T \cdot \mathrm{CH}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$ with $\mathrm{Li}\left(\mathrm{NPr}_{2}^{i}\right)$ to give 1

A sample of $\left[\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)(0.050$ $\mathrm{g}, 0.095 \mathrm{mmol}$) was dissolved in 15 ml of THF at $-40^{\circ} \mathrm{C}$, and a fresh $\mathrm{Li}\left(\mathrm{NPr}_{2}^{\mathrm{i}}\right)$ solution prepared by the reaction of $\operatorname{HNPr}_{2}^{\mathrm{i}}(0.011 \mathrm{~g}, 0.108 \mathrm{mmol})$ with $n-$ $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Li}(0.06 \mathrm{ml}$ of 2.26 M solution, $\sim 0.109 \mathrm{mmol})$ in THF (5 ml) was added. The solution immediately turned green. The reaction mixture was stirred at -40 to $0^{\circ} \mathrm{C}$ for 4 h during which time the green solution gradually turned dark orange. After evaporating the solution under vacuum to dryness, the residue was chromatographed on $\mathrm{Al}_{2} \mathrm{O}_{3}$ (neutral) with hexanes as the eluent. A light yellow band was eluted and collected. The solvent was removed in vacuo, and the residue was recrystallized from hexanes at $-80^{\circ} \mathrm{C}$ to give $0.019 \mathrm{~g}(45 \%)$ of $\mathbf{1}$ as light yellow crystals (m.p. (dec.) $117-118^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.53(\mathrm{~s}, 2 \mathrm{H})$, $1.92(\mathrm{~s}, 15 \mathrm{H}), 1.11(\mathrm{~s}, 6 \mathrm{H})$.
2.6. Reaction of $\mathbf{1}$ with $\left(\mathrm{MeS}-\mathrm{SMe}_{2}\right) \mathrm{BF}_{4}$ to give $\left[C p^{*} \operatorname{Ir}\left(\eta^{4}-2,5-M e_{2} T \cdot S M e\right)\right]\left(B F_{4}\right)(5)$

To a solution of $1(0.032 \mathrm{~g}, 0.073 \mathrm{mmol})$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added ($\mathrm{MeS}-\mathrm{SMe}_{2}$) $\mathrm{BF}_{4}(0.016 \mathrm{~g}, 0.082$ mmol) at $-30^{\circ} \mathrm{C}$. The light yellow solution quickly turned orange to dark orange. The mixture was stirred at -30 to $-20^{\circ} \mathrm{C}$ for 4 h . After vacuum removal of the solvent, the residue was extracted with hexanes$\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ twice ($5 \mathrm{ml} \times 2$). The combined extracts were evaporated under vacuum to dryness, and the residue was recrystallized from hexanes-THF (1:1) at $-80^{\circ} \mathrm{C}$ to give orange-yellow crystals of 5 (m.p. (dec.) $\left.48-50^{\circ} \mathrm{C}\right)$. Yield: $0.025 \mathrm{~g}\left(64 \%\right.$, based on 1). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 5.28(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 6 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.02$ (s, 15 H). MS: $m / e 487\left[\mathrm{M}^{+}-\mathrm{BF}_{4}\right]$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~S}_{2} \mathrm{IrBF}_{4}: \mathrm{C}, 35.60 ; \mathrm{H}, 4.57$. Found: C, $35.69 ; \mathrm{H}$, 4.25\%.

2.7. Reaction of $\mathbf{2}$ with ($\left.\mathrm{MeS}-\mathrm{SMe}_{2}\right) \mathrm{BF}_{4}$ to give

 $\left[C p^{*} \operatorname{Ir}\left(C, S-2,5-\mathrm{Me}_{2} T\right) S M e\right]\left(B F_{4}\right)(6)$Similar to the procedure described in the reaction of 1 with ($\mathrm{MeS}-\mathrm{SMe}_{2}$) $\mathrm{BF}_{4}, 0.050 \mathrm{~g}(0.114 \mathrm{mmol})$ of 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ was treated with $\left(\mathrm{MeS}-\mathrm{SMe}_{2}\right) \mathrm{BF}_{4}$ $(0.023 \mathrm{~g}, 0.117 \mathrm{mmol})$ at -30 to $0^{\circ} \mathrm{C}$ for 4 h during which time the red solution gradually turned orange. After vacuum removal of the solvent, the residue was extracted with hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ twice ($10 \mathrm{ml} \times 2$). The combined extracts were evaporated under vacuum to dryness, and the residue was recrystallized from
hexanes-THF at $-80^{\circ} \mathrm{C}$ to give $0.042 \mathrm{~g}(68 \%$, based on 2) of orange crystalline 6 (m.p. (dec.) $234-236^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.82(\mathrm{~d}, 1 \mathrm{H}), 5.54(\mathrm{~d}, 1 \mathrm{H}), 2.52(\mathrm{~s}$, $3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 15 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}) . \mathrm{MS}: m / e$ $487\left[\mathrm{M}^{+}-\mathrm{BF}_{4}\right]$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{~S}_{2} \mathrm{IrBF}_{4}$: C , 35.60 ; H, 4.57. Found: C, 35.90; H, 4.25\%.
2.8. Reaction of $\mathbf{1}$ with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ to give
$\left[\mathrm{Cp}^{*} \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{H}\right]\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)\right.$ (7)
To a stirred solution of $1(0.035 \mathrm{~g}, 0.080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added $0.012 \mathrm{~g}(0.080 \mathrm{mmol})$ of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ by syringe. The light yellow solution immediately turned orange. After stirring for 10 min at r.t., the solvent was evaporated in vacuo to dryness. The orange residue was recrystallized from $\mathrm{Et}_{2} \mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ to give $0.038 \mathrm{~g}(81 \%$, based on $\mathbf{1})$ of orangeyellow powder 7. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 5.82(\mathrm{~d}, 1 \mathrm{H})$, $4.67(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~d}, 1 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 15 \mathrm{H})$, $0.83(\mathrm{~d}, 3 \mathrm{H})$. MS (FAB): $m / e 441\left[\mathrm{M}^{+}\right]$. Anal. Calc. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{~F}_{3} \mathrm{~S}_{2} \mathrm{Ir}$: C, 34.62; H, 4.10. Found: C, 34.38; H, 4.28\%.

2.9. Reaction of $\mathbf{2}$ with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ to give 7

To a solution of $2(0.035 \mathrm{~g}, 0.080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{ml})$ was added $0.012 \mathrm{~g}(0.080 \mathrm{mmol})$ of $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ by syringe. The red solution immediately turned orange. After 10 min stirring at r.t., the solvent was evaporated to dryness in vacuo. Further treatment of the remaining residue as described above for the reaction of $\mathbf{1}$ with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ gave $0.036 \mathrm{~g}(76 \%$, based on 2$)$ of 7 as an orange-yellow powder which was identified by its ${ }^{1} \mathrm{H}$ NMR and mass spectra.
2.10. Reaction of $\mathbf{1}$ with HCl (gas) to give $C p^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{H}\right) \mathrm{Cl}(\mathbf{8})$

Into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$ solution of $1(0.030 \mathrm{~g}, 0.068$ $\mathrm{mmol})$ at $-40^{\circ} \mathrm{C}$ was bubbled HCl gas. The light yellow solution immediately turned purple-red. After bubbling for 1 min at -40 to $-35^{\circ} \mathrm{C}$, the solvent was evaporated to dryness under vacuum, and the remaining residue was recrystallized from hexanes- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-80^{\circ} \mathrm{C}$ to give $0.018 \mathrm{~g}(56 \%$, based on $\mathbf{1})$ of light yellow crystalline 8 (m.p. (dec.) $96^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right): \delta 5.27(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 6 \mathrm{H}), 1.58$ ($\mathrm{s}, 15 \mathrm{H}$). EIMS: m/e $476\left[\mathrm{M}^{+}\right], 441\left[\mathrm{M}^{+}-\mathrm{Cl}\right], 440$ $\left[\mathrm{M}^{+}-\mathrm{HCl}\right]$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{ClSIr} \cdot 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$: C, 33.47; H, 4.37. Found: C, 33.77; H, 4.41\%.

2.11. Reaction of $\mathbf{2}$ with HCl (gas) to give $\boldsymbol{8}$

As described above for the reaction of $\mathbf{1}$ with HCl gas, $2(0.022 \mathrm{~g}, 0.050 \mathrm{mmol})$ in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-40^{\circ} \mathrm{C}$ was treated with HCl . The red solution imme-
diately turned yellow. After 1 min , the resulting solution was treated as above to give 0.013 g (54%, based on 2) of light yellow crystalline $\mathbf{8}$ which was identified by its m.p. and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

2.12. Reaction of $\mathbf{1}$ with $\mathrm{H}_{2} \mathrm{~S}$ to give
 Cp * $\operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)\left(\mathrm{H}_{2} \mathrm{~S}\right)(9)$

Into a solution of $0.030 \mathrm{~g}(0.068 \mathrm{mmol})$ of $\mathbf{1}$ dissolved in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was bubbled $\mathrm{H}_{2} \mathrm{~S}$ gas at $15-20^{\circ} \mathrm{C}$ for 3 h during which time the light yellow solution turned golden yellow to brown-yellow. After vacuum removal of the solvent, the remaining residue was recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-80^{\circ} \mathrm{C}$ to give $0.012 \mathrm{~g}(37 \%$, based on $\mathbf{1})$ of orange crystalline 9 (m.p. (dec.) $\left.123-124^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.69(\mathrm{~d}, 1 \mathrm{H})$, $7.51(\mathrm{~d}, 1 \mathrm{H}), 4.20(\mathrm{~m}, 2 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 15 \mathrm{H})$, $0.90(\mathrm{t}, 3 \mathrm{H})$. EIMS: $m / e 474\left[\mathrm{M}^{+}\right], 472\left[\mathrm{M}^{+}-2 \mathrm{H}\right], 392$ $\left[\mathrm{Cp}^{*} \mathrm{IrS}_{2}^{+}\right]$. Anal. Calc. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~S}_{2} \mathrm{Ir}: \mathrm{C}, 40.57 ; \mathrm{H}$, 5.32. Found: C, 41.00 ; H, 5.13%.

2.13. Reaction of $\mathbf{2}$ with $H_{2} S$ to give 9

As for the preceding synthesis, $\mathrm{H}_{2} \mathrm{~S}$ gas was bubbled into a solution of $2(0.030 \mathrm{~g}, 0.068 \mathrm{mmol})$ in 30 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $15-20^{\circ} \mathrm{C}$ for 3 h . The color of the solution changed from red to brown-yellow. Subsequent treatment of the resulting solution as described for the reaction of 1 with $\mathrm{H}_{2} \mathrm{~S}$ gave $0.014 \mathrm{~g}(44 \%$, based on 2) of 9 as orange crystals which were identified by their m.p. and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum.

2.14. Reaction of $\mathbf{1}$ with EtOH to give $\mathrm{Cp}^{*} \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(\mathrm{EtOH})(10)$

To a stirred solution of $1(0.035 \mathrm{~g}, 0.080 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$ at r.t. was added $0.5 \mathrm{ml}(0.393 \mathrm{~g}, 8.52$ mmol) of EtOH (absolute). The solution was stirred at r.t. for 6 h during which time the light yellow solution gradually turned orange. After evaporation of the solvent to dryness in vacuo, the remaining residue was recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-80^{\circ} \mathrm{C}$ to give orange-yellow crystals of $\mathbf{1 0}$, yield $0.012 \mathrm{~g}\left(31 \%\right.$, based on 1) (m.p. (dec.) $103-105^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.20(\mathrm{~d}, 1 \mathrm{H}), 6.08(\mathrm{~m}, 1 \mathrm{H}), 5.68$ $(\mathrm{d}, 1 \mathrm{H}), 3.71(\mathrm{q}, 2 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~s}$, $15 \mathrm{H}), 1.22(\mathrm{t}, 3 \mathrm{H})$. EIMS: $m / e 486\left[\mathrm{M}^{+}\right], 441\left[\mathrm{M}^{+}-\right.$ $\mathrm{OEt}], 440\left[\mathrm{M}^{+}-\mathrm{EtOH}\right]$. Anal. Calc. for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{OSIr}$: C, 44.51 ; H, 6.02. Found: C, $44.88 ; \mathrm{H}, 6.48 \%$.

2.15. Reaction of $\mathbf{2}$ with I_{2} to give $\left(C p^{*} \operatorname{Ir} I_{2}\right)_{2}$ (11)

To a solution of $2(0.020 \mathrm{~g}, 0.045 \mathrm{mmol})$ in 20 ml of THF (or acetone) was added $0.012 \mathrm{~g}(0.095 \mathrm{mmol})$ of I_{2} at $-30^{\circ} \mathrm{C}$. The mixture was stirred at $-30^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$ for 4 h during which time the purple solution turned
dark red. After evaporating the solution in vacuo to dryness, the dark red residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The solution was filtered to remove insoluble materials. The filtrate was evaporated and the residue was recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-80^{\circ} \mathrm{C}$ to give black-red crystals of $\mathbf{1 1}$, yield $0.021 \mathrm{~g}(81 \%$, based on 2) (m.p. (dec.) $280^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 1.89$ (s, Cp*). MS: m/e 1036 [$\left.\mathrm{M}^{+}-\mathrm{I}\right], 909$ [$\left.\mathrm{M}^{+}-2 \mathrm{I}\right]$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{I}_{4} \mathrm{Ir}_{2}$: C, 20.66; H, 2.60. Found: C, 20.82; H, 2.65\%.

2.16. Reaction of $\mathbf{1}$ with maleic anhydride to give $\mathrm{Cp}^{*} \operatorname{Ir}\left[\mathrm{SC}_{3} \mathrm{H}_{2} \mathrm{MeC}(=\mathrm{O}) \mathrm{Me} \cdot \mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{3}\right]$ (12) and $\left.C p^{*} \operatorname{Ir}\left[\eta^{1}(S)-C p^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} T\right)\right]\left(\eta^{2}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{3}\right)\right)(13)$

A sample of $1(0.040 \mathrm{~g}, 0.091 \mathrm{mmol})$ was dissolved in 30 ml of THF at r.t. To this solution was added 0.018 $\mathrm{g}(0.18 \mathrm{mmol})$ of maleic anhydride. The mixture was stirred at r.t. for 30 h . The resulting orange solution was evaporated under vacuum to dryness, and the residue was chromatographed on SiO_{2} with hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}(1: 1: 0.5)$ as the eluent. A yellow band eluted first; then an orange band was eluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$ (1:1). The solvents were removed from the above eluates, and the residues were recrystallized from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-80^{\circ} \mathrm{C}$. From the first fraction, $0.010 \mathrm{~g}(20 \%$, based on 1) of orange crystalline 12 was obtained (m.p. (dec.) $141-142^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 3.95(\mathrm{~d}, 1 \mathrm{H}), 3.64(\mathrm{~d}, 1 \mathrm{H}), 3.50(\mathrm{~d}$, $1 \mathrm{H}), 3.02(\mathrm{~d}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}$, 15H). MS: m/e $554\left[\mathrm{M}^{+}\right]$. Anal. Calc. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{SIr}$: C, 43.78; H, 4.55. Found: C, 43.29; H, 4.72\%. From the second fraction, $0.012 \mathrm{~g}(15 \%$, based on $\mathbf{1})$ of 13 as orange-yellow crystals was obtained (m.p. (dec.) 165$\left.167^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.13(\mathrm{~s}, 2 \mathrm{H})$, $1.92(\mathrm{~s}, 15 \mathrm{H}), 1.61(\mathrm{~s}, 15 \mathrm{H}), 0.99(\mathrm{~s}, 6 \mathrm{H})$. MS: m/e 866 $\left[\mathrm{M}^{+}\right], \quad 768 \quad\left[\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}_{3}\right]$. Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SIr}_{2}$: C, 41.65; H, 4.66. Found: C, 41.22; H, 5.01%.

2.17. Reaction of $\mathbf{2}$ with maleic anhydride to give $\mathbf{1 2}$

As described above for the reaction of $\mathbf{1}$ with maleic anhydride, $2(0.030 \mathrm{~g}, 0.068 \mathrm{mmol})$ was reacted with $0.014 \mathrm{~g}(0.14 \mathrm{mmol})$ of maleic anhydride in THF (30 ml) at -40 to $-20^{\circ} \mathrm{C}$ for 24 h . Subsequent treatment of the resulting mixture as described for the reaction of 1 with maleic anhydride yielded $0.016 \mathrm{~g}(42 \%$, based on 2) of orange crystalline $\mathbf{1 2}$, which was identified by its melting point, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and MS spectra.

2.18. Reaction of $C p^{*} \operatorname{Ir}\left(\eta^{4}-\mathrm{SC}_{3} \mathrm{H}_{2} \mathrm{MeC}(=\mathrm{O}) \mathrm{Me}\right.$ (14) with maleic anhydride to give 12

To a solution of $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-\mathrm{SC}_{3} \mathrm{H}_{2} \mathrm{MeC}(=\mathrm{O}) \mathrm{Me}\right)(0.015$ $\mathrm{g}, 0.022 \mathrm{mmol}$) in 20 ml of THF at $-40^{\circ} \mathrm{C}$ was added
$0.006 \mathrm{~g}(0.061 \mathrm{mmol})$ of maleic anhydride. The reaction mixture was stirred at -40 to $20^{\circ} \mathrm{C}$ for 24 h during which time the light yellow solution gradually turned orange. Further treatment of the resulting solution in a manner similar to that described above for the reaction of $\mathbf{1}$ with maleic anhydride gave $0.009 \mathrm{~g}(75 \%)$ of $\mathbf{1 2}$ as orange crystals which were identified by their melting point and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra.

2.19. X-ray crystal structure determinations of 3, 12 and 13

Crystals of complexes 3, $\mathbf{1 2}$ and $\mathbf{1 3}$ suitable for X-ray diffraction studies were obtained by recrystallization from hexanes $-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The single crystals were mounted on the end of a glass fiber. The X-ray diffraction intensity data were collected by using En-raf-Nonius CAD4, Siemens P4RA, and Rigaku AFC7R diffractometers, respectively. The cell constants were determined from a list of reflections found by an automated search routine.

For 3, the systematic absences unambiguously indicated that the space group was Pbcn (no. 60). The Ir, S, and I atoms were placed based on a direct method E-map [11]. The remaining non-hydrogen atoms were located in a subsequent difference Fourier map. In the final stages of the refinement, all 20 non-hydrogen atoms were given anisotropic temperature factors, and secondary extinction coefficients were included (refining to a value of $8(1) \times 10^{-9}$, in absolute units). Hydrogen atoms were not considered in the model. The final refinement cycles involved 182 parameters which were fit to 1784 observed data.

For complex 12, the space group was chosen based on systematic absences and intensity statistics. This assumption proved to be correct based on a successful direct methods solution [12] and subsequent refinement of the structure. All non-hydrogen atoms were placed directly from the E-map and refined with anisotropic thermal parameters. Hydrogen atoms were refined in one of two ways: (1) methyl hydrogens were refined as idealized groups with common isotropic displacement parameters or (2) tertiary hydrogens were refined as isotropic atoms with joint isotropic displacement parameters.

The structure of complex $\mathbf{1 3}$ was solved by heavyatom Patterson methods and expanded using Fourier techniques. Some non-hydrogen atoms were refined anisotropically, while the rest were refined isotropically. Hydrogen atoms were included but not refined. The final cycle of the full-matrix least-squares refinement was based on 2345 observed reflections $(I>3.0 \sigma(I))$ and 242 variable parameters.

All the calculations were performed using the CAD4SDP, SHELXTL-Plus programs, or the TEXSAN crystallographic software package of the Molecular Structure

Corporation. Details of the crystallographic data and procedures used in the data collection and reduction for complexes 3, 12, and $\mathbf{1 3}$ are given in Table 1. Selected bond lengths and angles are listed in Table 2. The molecular structures for 3, 12, and 13 are given in Figs. $1-3$, respectively. The atomic coordinates and $B_{\text {iso }} / B_{\text {eq }}$, anisotropic displacement parameters, complete bond lengths and angles, least-squares planes for 3, 12, and 13 are given in the Supplementary Material.

3. Results and discussion

3.1. Reactions of $\mathbf{1}$ and $\mathbf{2}$ with the electrophiles (MeI and $\mathrm{MeS}-\mathrm{SMe}_{2}^{+}$)

Both 1 and 2 react (Eq. (5)) with MeI at room temperature to give 3 in 63% and 54% yields,

respectively. These reactions are similar to those (Eq. (2)) of $\mathbf{1}$ and $\mathbf{2}$ with other Lewis acids/electrophiles, including the reaction [7] with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$to give $\left[\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)\right] \mathrm{BF}_{4}$, which contains the same cation as in 3, but could not be obtained as X-ray quality crystals. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of these cations are similar but not identical. In the I^{-}salt, the $2,5-$ methyl groups and 3,4-hydrogens are at $\delta 1.59$ and 5.07 ppm respectively, whereas the same protons in the BF_{4}^{-} salt are at $\delta 1.53$ and 4.92 ppm . The $\mathrm{S}-\mathrm{CH}_{3}$ signals are at $\delta 2.27$ and 2.08 ppm for the I^{-}and BF_{4}^{-}salts, respectively. As spectra of both salts were measured in CDCl_{3} solvent, differences in their chemical shifts are presumably due to ion-pairing effects of the different anions.
The structure (Fig. 1) of $\mathbf{3}$ is very similar to that [1] of the analogous BH_{3} adduct $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{BH}_{3}\right)$. The $\mathrm{C}(2)-\mathrm{S}$ and $\mathrm{C}(5)-\mathrm{S}$ bonds are similar in both (1.79(2), 1.78(1) \AA in 3 and $1.80(1), 1.81(1)$ in the BH_{3} adduct) as well as in $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-2-\mathrm{MeT} \cdot \mathrm{BH}_{3}\right)(1.79(1)$, $1.79(1))$ [7]. In all of these compounds, the $\mathrm{C}-\mathrm{S}$ bonds are lengthened compared to those in free thiophene $(1.72 \AA)$ [13] and in 1 (1.76(2), $1.79(1) \AA$) [2], although the errors in $\mathbf{1}$ are relatively large. In $\mathbf{3}$, all of the thiophene $\mathrm{C}-\mathrm{C}$ distances (1.45(2), 1.45(2), 1.46(2)) are the same within experimental error as was also observed for $C p * \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{BH}_{3}\right)$ [1], which suggests delocalization in the diene part of the ligand. As expected, the $\mathrm{S}-\mathrm{CH}_{3}$ bond is shorter in $3(1.83(1) \AA)$ than the $\mathrm{S}-\mathrm{BH}_{3}$ bond $\left(1.97(1) \AA\right.$) in the BH_{3} adduct because the atomic radius of C is smaller than that of B.

The reaction (Eq. (6)) of 3 with lithium diisopropylamide (LDA) gives a red product (4) (51% yield) with a composition $\mathrm{Cp} * \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{TCH}_{2}\right)$ that is supported by a parent ion in the mass spectrum

and a satisfactory elemental analysis. The compound is soluble in both polar and non-polar organic solvents and is air-sensitive in solution and the solid state. In the absence of X-ray quality crystals, a proposed structure for 4 must be based on the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum which shows CH_{3} signals at $\delta 2.58 \mathrm{~s}$ and $1.98 \mathrm{~s} \mathrm{ppm}, \mathrm{C}-\mathrm{H}$ signals at 7.52 dd and 7.69 dd , and a CH_{2} signal at 6.00 s. While the structure proposed for 4 in Eq. (6) accounts for non-equivalent CH_{3} and $\mathrm{C}-\mathrm{H}$ groups as well as a CH_{2} unit, it does not explain the doublet-of-doublets splitting of the $\mathrm{C}-\mathrm{H}$ groups; these signals would be expected to be simple doublets. A structure in which the CH_{2} is present as a carbene ligand $\left(\mathrm{Ir}=\mathrm{CH}_{2}\right)$ seems unlikely as the ${ }^{1} \mathrm{H}$ signal for the CH_{2} group occurs at approximately 16 ppm in known $\mathrm{Ir}=\mathrm{CH}_{2}$ compounds [14]. The structure of 4 proposed in Eq. (6) must be
regarded as tentative. Rather surprisingly, the reaction of $\left[\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)\right]\left(\mathrm{BF}_{4}\right)$ with LDA does not give $\mathbf{4}$ but instead the demethylated product $\mathbf{1}$ in 45% yield. It is not clear why the I^{-}and BF_{4}^{-}anions cause these reactions to give different products.

The reaction (Eq. (7)) of $\mathbf{1}$ with the electrophilic ($\mathrm{MeS}-\mathrm{SMe}_{2}$) BF_{4} gave 5 with a composition

$\left[\mathrm{Cp} * \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{SMe}\right)\right] \mathrm{BF}_{4}$ that is supported by its mass spectrum and elemental analysis. This air-sensitive complex has a simple ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum that shows equivalent 2,5 -methyl groups ($\delta 2.39 \mathrm{~s} \mathrm{ppm}$), equivalent 3,4 -hydrogens (5.28 s pm) and a SMe group (2.31s $\mathrm{ppm})$. These chemical shifts and the lack of hyperfine coupling are consistent with the structure in Eq. (7) that has an SMe^{+}group on the thiophene sulfur. The signals for all of these methyl groups are somewhat downfield of those in the related methyl complex 3.

Table 1
Crystal data and and collection parameters for complexes 3, 12, and 13

	3	12	13
Formula	$\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{ISIr}$	$\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4} \mathrm{SIr}$	$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SIr}_{2}$
Formula weight	581.56	553.7	865.14
Space group	Pbon	$P 21_{1} / \mathrm{c}$ (no.14)	$P 21_{1} / C$ (no.14)
$a(\AA)$	22.393(2)	9.376(2)	10.095(4)
b (\AA)	12.899(1)	18.082(5)	16.290(4)
$c($ ($)$	13.098	11.675(2)	18.394(5)
β (deg)		106.35(2)	99.01(3)
$V\left(\AA^{3}\right)$	3783.2(8)	1899.4(6)	2987(1)
Z	8	4	4
$D_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.042	1.936	1.923
Crystal size (mm)	$0.24 \times 0.10 \times 0.09$	$0.26 \times 0.22 \times 0.05$	$0.20 \times 0.20 \times 0.30$
Frequency ($\mathrm{Mo}-\mathrm{K}_{\alpha}$) $\left(\mathrm{cm}^{-1}\right)$	87.445	$14.826\left(\mathrm{~mm}^{-1}, \mathrm{Cu}-\mathrm{K}_{\alpha}\right)$	90.22
Radiation (monochromated in incident beam) (\AA)	0.71073 (Mo-K ${ }_{\alpha}$)	$1.54178\left(\mathrm{Cu}-\mathrm{K}_{\alpha}\right)$	$0.71069\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right)$
Diffractometer	Enraf-Nonius CAD4	Siemens P4RA	Rigaku AFC7R
Temperature (${ }^{\circ} \mathrm{C}$)	-25(1)	-60(1)	20.0
Orientation reflections: no.; range (20) $\left(^{\circ}\right.$)	25; $21.1<2 \theta<32.0$		22; 18.4-21.7
Scan method	$\theta-2 \theta$	$2 \theta-\theta$	${ }^{\omega}$-2 2θ
Data collection range, $2 \theta\left({ }^{\circ}\right)$	4-50.0	4-115.0	5-46.1
Number of unique data, total	3326	2558	4304
with $I>3.00 \sigma(I)$	1784	2387 ($F \geq 4.0 \sigma(F)$)	2345
Number of parameters refined	182	277	242
Correction factors (max., min.)	0.9321, 0.9995	0.0219, 1.0000	0.9128, 1.0000
$R^{\text {a }}$	0.0285	0.0319	0.052
$R w^{\text {b }}$	0.0342	0.0400	0.056
Quality-of-fit indicator ${ }^{\text {c }}$	0.926	1.49	1.94
Largest shift/esd. Final cycle	0.01	0.020	0.01
Largest peak, (e A^{-3})	0.6(1)	1.06	1.63
Minimum peak, (e \AA^{-3})		-1.54	-1.14

[^1]Table 2
Selected bond lengths $(\AA)^{a}$ and angles $\left({ }^{\circ}\right)^{\text {a }}$ for complexes 3, 12, and 13
Complex 3

Bond lengths
Ir-C(2)
Ir-C(3)

Ir-C(4)
Ir-C(5)
S-C(2)
S-C(5)
Bond angles
$\mathrm{C}(2)-\mathrm{S}-\mathrm{C}(5)$
$\mathrm{S}-\mathrm{C}(2)-\mathrm{C}(3)$
$\mathrm{S}-\mathrm{C}(2)-\mathrm{C}(1)$
$\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(4)$
$\mathrm{S}-\mathrm{C}(5)-\mathrm{C}(6)$
Complex 12
Bond lengths $\mathrm{Ir}-\mathrm{S}$
$\mathrm{Ir}-\mathrm{C}(1)$
$\mathrm{Ir}-\mathrm{C}(8)$
$\mathrm{C}(1)-\mathrm{C}(2)$
$\mathrm{C}(2)-\mathrm{O}(1)$
$\mathrm{O}(1)-\mathrm{C}(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$
$\mathrm{C}(4)-\mathrm{C}(6)$
$\mathrm{S}-\mathrm{C}(4)$
Bond angles

S-Ir-C(1)	$84.7(2)$
S-Ir-C(8)	$86.1(2)$
C(1)-Ir-C(8)	$73.2(3)$
Ir-S-C(4)	$95.4(2)$
$\mathrm{Ir}-\mathrm{C}(1)-\mathrm{C}(2)$	$94.6(5)$
$\mathrm{Ir}-\mathrm{C}(1)-\mathrm{C}(6)$	$102.8(5)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$	$103.3(5)$
$\mathrm{C}(1)-\mathrm{C}(6)-\mathrm{C}(4)$	$99.8(5)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(6)$	$101.1(5)$
$\mathrm{C}(2)-\mathrm{O}(1)-\mathrm{C}(4)$	$106.6(4)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$130.3(6)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(1)$	$114.4(5)$
$\mathrm{S}-\mathrm{C}(4)-\mathrm{C}(6)$	$108.5(4)$
$\mathrm{O}(1)-\mathrm{C}(4)-\mathrm{C}(5)$	$107.4(4)$
$\mathrm{S}-\mathrm{C}(4)-\mathrm{C}(5)$	$114.9(5)$

Complex 13
Bond lengths

$\mathrm{Ir}(1)-\mathrm{C}(2)$	$2.07(2)$
$\mathrm{Ir}(1)-\mathrm{C}(3)$	$2.08(3)$
$\mathrm{Ir}(1)-\mathrm{C}(4)$	$2.07(3)$
$\mathrm{Ir}(1)-\mathrm{C}(5)$	$2.11(3)$
$\mathrm{S}(1)-\mathrm{C}(2)$	$1.78(3)$
$\mathrm{S}(1)-\mathrm{C}(5)$	$1.77(3)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.42(4)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.34(4)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.41(4)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.59(4)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.50(4)$

Bond angles			
$\mathrm{C}(2)-\mathrm{S}(1)-\mathrm{C}(5)$			
$\mathrm{S}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$114(2)$	$\operatorname{Ir}(2)-\mathrm{C}(9)-\mathrm{C}(10)$	$114(2)$
$\mathrm{Ir}(2)-\mathrm{C}(8)-\mathrm{C}(7)$	$111(2)$		
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$105(2)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$101(2)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$113(2)$	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$115(2)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{S}(1)$	$109(1)$	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{C}(9)$	$99(2)$
$\mathrm{Ir}(2)-\mathrm{S}(1)-\mathrm{C}(5)$	$1216(10)$	$\mathrm{O}(1)-\mathrm{C}(10)-\mathrm{O}(2)$	$120(3)$

Table 2 (Continued)

$\operatorname{Ir}(2)-\mathrm{S}(1)-\mathrm{C}(2)$	$120.8(8)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{C}(8)$	$109(2)$
$\mathrm{S}(1)-\mathrm{Ir}(2)-\mathrm{C}(8)$	$90.8(8)$	$\mathrm{C}(7)-\mathrm{O}(1)-\mathrm{C}(10)$	$113(2)$
$\mathrm{S}(1)-\mathrm{Ir}(2)-\mathrm{C}(9)$	$91.6(8)$	$\mathrm{O}(1)-\mathrm{C}(7)-\mathrm{O}(3)$	$122(3)$
$\mathrm{C}(8)-\mathrm{Ir}(2)-\mathrm{C}(9)$	$40(1)$	$\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$	$127(3)$
$\mathrm{Ir}(2)-\mathrm{C}(8)-\mathrm{C}(9)$	$71(1)$	$\mathrm{O}(2)-\mathrm{C}(10)-\mathrm{C}(9)$	$139(3)$
$\mathrm{Ir}(2)-\mathrm{C}(9)-\mathrm{C}(8)$	$68(1)$		

${ }^{\text {a }}$ Estimated standard deviations in the least significant figure are given in parentheses.

In contrast to most reactions of $\mathbf{1}$ and $\mathbf{2}$, the reaction (Eq. (8)) of $\mathbf{2}$ with $\mathrm{MeS}-\mathrm{SMe}_{2}^{+}$gives a

different product than the reaction of $\mathbf{1}$. The air-sensitive product $\mathbf{6}$ has the same composition as $\mathbf{5}$, but its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum clearly shows non-equivalent 2,5 methyl groups ($\delta 2.52 \mathrm{~s}, 2.07 \mathrm{spm}$), non-equivalent, coupled C-H groups ($5.82 \mathrm{~d}, 5.54 \mathrm{~d} \mathrm{ppm}$) and an SMe group at $\delta 1.94 \mathrm{~s} \mathrm{ppm}$. All of the NMR features are consistent with the thiophene ring-opened structure of the type shown in Eq. (8). The SMe^{+}group is shown co-ordinated to Ir, but the experimental evidence does not exclude a structure with the SMe^{+}group on the sulfur of the ring-opened thiophene.

3.2. Reactions of $\mathbf{1}$ and $\mathbf{2}$ with Bronsted acids

Both 1 and 2 react (Eq. (9)) immediately with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ to give the same product

$\left[\mathrm{Cp} * \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{H}\right)\right] \mathrm{CF}_{3} \mathrm{SO}_{3}(7)$ in 81% and 76% yields, respectively. Although X-ray quality crystals could not be obtained, the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 7 shows that a proton has added to the $2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand, as was observed by Rauchfuss and co-workers [15] in the reaction of another $\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}$ complex $\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\left(\eta^{4}-2,5-\right.$ $\mathrm{Me}_{2} \mathrm{~T}$) with the proton donor NH_{4}^{+}. The ${ }^{1} \mathrm{H}$-NMR spectrum of their product $\left[\left(\eta^{6}-\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\left(\eta^{\mathrm{r}}-2,5-\right.\right.$ $\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{H}$)] ${ }^{+}$, whose structure (A) was established by X-ray diffraction studies, is very similar to that of 7. The ${ }^{1} \mathrm{H}$-NMR spectrum of 7 exhibits a

A

Fig. 1. Thermal ellipsoid drawing of 3, showing the atom-numbering scheme.
doublet methyl signal at high field ($\delta 0.83 \mathrm{~d} p \mathrm{pm}$) for the methyl on the saturated carbon, while the other methyl is a singlet at lower field (2.57 s ppm). The hydrogen on the saturated carbon is a multiplet due to coupling with the methyl group and adjacent $\mathrm{C}-\mathrm{H}$ group. Both of the $\mathrm{C}-\mathrm{H}$ groups give doublets at $\delta 5.82$ and 4.22 ppm ; the $\mathrm{C}-\mathrm{H}$ adjacent to the saturated carbon would be expected to be a doublet-of-doublets, but one of these coupling constants may be too small to observe. Rauchfuss et al. [16] also reported the slow $\mathrm{C}-\mathrm{S}$ cleavage of the thiophene analog of $\mathbf{A}\left[\left(\eta^{6}-\right.\right.$ $\left.\left.\mathrm{C}_{6} \mathrm{Me}_{6}\right) \mathrm{Ru}\left(\eta^{4}-\mathrm{T} \cdot \mathrm{H}\right)\right]^{+}$to give the dienethiolate isomer B. Although A did not undergo a similar cleavage, it is not possible to exclude the dienethiolate structure for complex 7. Dienethiolate structures have also been observed $[17,18]$ in a series of $\left(\eta^{5}-\mathrm{Cp}\right) \mathrm{Ru}\left(\eta^{5}\right.$-thiophene $\cdot \mathrm{H})^{+}$complexes.

When gaseous HCl , rather than $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$, is reacted with $\mathbf{1}$ or $\mathbf{2}$, yellow $\mathbf{8}$ is formed. Its $\mathrm{Cp} * \operatorname{Ir}(2,5-$ $\left.\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{H}\right) \mathrm{Cl}$ composition is established by elemental analyses and the parent ion in the mass spectrum. Although one would expect the same product to form with either $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ or HCl , the simplicity of the ${ }^{1} \mathrm{H}$-NMR spectrum for $\mathbf{8}$ clearly indicates that it has a much different structure than 7. The proposed structure in Eq. (10) is consistent with the observed singlet at

$\delta 2.10 \mathrm{spm}$ for the equivalent methyl groups and the singlet at 5.27 s ppm for the 3,4 -hydrogens. These ab-
sorptions are somewhat downfield of the corresponding signals ($\delta 1.59 \mathrm{~s}, 5.07 \mathrm{ppm}$) for the analogous methyl complex Cp * $\operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{CH}_{3}\right)^{+} \mathrm{I}^{-}$(3). These resonances for $\mathbf{8}$ are also very similar to those ($\delta 2.39 \mathrm{~s}$, $5.28 \mathrm{spm})$ for $\left[\mathrm{Cp}^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T} \cdot \mathrm{SMe}\right)\right] \mathrm{BF}_{4}$ (5). The $\mathrm{S}-\mathrm{H}$ hydrogen in $\mathbf{8}$ at $\delta 2.38 \mathrm{~s}$ ppm is in the region characteristic of thiols (RSH). While $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ and HCl give different products in their reactions with 1 and $\mathbf{2}$, it is not clear why their structures are different unless there are specific interactions between the cationic complexes and their anions (such as hydrogenbonding between the SH proton and the Cl^{-}) that stabilize the different structures.
Like $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ and HCl , gaseous $\mathrm{H}_{2} \mathrm{~S}$ reacts with 1 and 2 to give a product ($\mathbf{9}$, in 37% and 44% yields) in which one molecule of $\mathrm{H}_{2} \mathrm{~S}$ has added to the starting complex. This composition $\mathrm{Cp}^{*} \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)\left(\mathrm{H}_{2} \mathrm{~S}\right)$ is

Fig. 2. Thermal ellipsoid drawing of 12, showing the atom-numbering scheme. Hydrogen atoms not shown.

Fig. 3. Thermal ellipsoid drawing of $\mathbf{1 3}$, showing the atom-numbering scheme. Hydrogen atoms not shown.
supported by elemental analyses and a parent ion in the mass spectrum. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 9 , however, shows that its structure is very different from those of either $\mathbf{7}$ or $\mathbf{8}$ obtained from the reactions with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}$ and HCl . In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 9 , one methyl group gives rise to a singlet ($\delta 1.68 \mathrm{ppm}$) while the other ($\delta 0.9 \mathrm{ppm}$) is a triplet, which suggests the presence of an ethyl group. Since it was not possible to obtain X-ray quality crystals of 9 , further speculation about its structure is not merited.

Although ethanol is a much weaker acid than the others discussed above, it reacts with $\mathbf{1}$ to give $\mathbf{1 0}$ with the composition $\mathrm{Cp} * \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(\mathrm{EtOH})$, which is established by elemental analysis and the parent ion in its mass spectrum. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum shows nonequivalent methyl groups, non-equivalent 3,4-hydrogens and a $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ group. Our inability to grow X-ray quality crystals does not permit a definitive structural assignment to be made to $\mathbf{1 0}$.

3.3. Reaction of $\mathbf{2}$ with an oxidizing agent (I_{2})

We previously observed (Eq. (3)) that 2 undergoes an oxidative-addition reaction with H_{2} to give the dihydride complex $\mathrm{Cp} * \operatorname{Ir}\left(\mathrm{C}, \mathrm{S}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)(\mathrm{H})_{2}$. Surprisingly, the reaction of 2 with I_{2} does not give the analogous diiodide product. Instead, the $2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand was substituted and $\left(\mathrm{Cp}^{*} \operatorname{IrI}_{2}\right)_{2}$ (11) was isolated in 81% yield (Eq. (11)). Compound 11, which was characterized by
its elemental analyses, mass spectrum, and ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, was previously reported [19]. The mechanism for reaction (11) presumably involves initial I_{2} oxidation of 2 to $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{5}-2,5-\mathrm{MeT}\right)^{2+}\left(\mathrm{I}^{-}\right)_{2}$. This step is related to the previously reported [1] oxidation of 2 to $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}$ by $2 \mathrm{Cp}_{2} \mathrm{Fe}^{+}$; this reaction is accompanied by ring-closure to form an $\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand. Displacement of the thiophene ligand in $\mathrm{Cp} * \operatorname{Ir}\left(\eta^{5}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)^{2+}\left(\mathrm{I}^{-}\right)_{2}$ by the I^{-}ions would then lead to the product (11).

3.4. Reactions of $\mathbf{1}$ and $\mathbf{2}$ with maleic anhydride

The reaction of $\mathbf{1}$ with maleic anhydride in THF solvent over a period of 30 h at room temperature gives (Eq. (12)) two isolated and crystallographically characterized products, 12 and 13,

in 20% and 15% yield, respectively. The most easily rationalized product 13 results from the replacement of the $\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}$ ligand in one molecule of $\mathbf{1}$ by another molecule of $\mathbf{1}$ and a maleic anhydride ligand. The presence of the S -bonded $\mathrm{Cp} \mathrm{p}^{*} \operatorname{Ir}\left(\eta^{4}-2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ ligand
illustrates again the strong co-ordinating ability of the sulfur in 1, as noted in the discussion of Eq. (2).

Complex 2 also reacts with maleic anhydride but gives only product 12 (in 42% yield). The lower reaction temperature (-40 to $-20^{\circ} \mathrm{C}$) and higher yield of $\mathbf{1 2}$ suggests that the formation of $\mathbf{1 2}$ in Eq. (12) may involve initial isomerization of $\mathbf{1}$ to $\mathbf{2}$, which then reacts with maleic anhydride to give 12.

The composition and structure of $\mathbf{1 3}$ shown in Eq. (12) are supported by elemental analyses as well as mass and ${ }^{1} \mathrm{H}$-NMR spectra. The structure (Fig. 3) of $\mathbf{1 3}$ is related to that of $\left.\mathrm{Cp}^{3} \operatorname{Rh}\left[\eta^{1}(\mathrm{~S})-\mathrm{Cp}{ }^{\prime} \mathrm{Rh}^{(} \eta^{4}-\mathrm{Me}_{4} \mathrm{~T}\right)\right]_{2}$, where $\mathrm{Cp}{ }^{\prime}=\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{4} \mathrm{Et}$, which contains two S -bonded $\mathrm{Cp}{ }^{\prime} \operatorname{Rh}\left(\eta^{4}-\mathrm{Me}_{4} \mathrm{~T}\right)$ ligands [20]. The plane of the η^{2}-coordinated maleic anhydride ligand in $\mathbf{1 3}$ is nearly parallel (14° angle) to the plane of the $\mathrm{Cp}{ }^{*}$ ligand on $\operatorname{Ir}(2)$.

The structure of product $\mathbf{1 2}$ is more complex and is composed of one $\mathrm{Cp} * \operatorname{Ir}\left(2,5-\mathrm{Me}_{2} \mathrm{~T}\right)$ unit, a maleic anhydride molecule and an oxygen atom. The source of the oxygen atom is not obvious, although the THF solvent and adventitious O_{2} are possibilities. Previously [8] we observed that O_{2} reacts with $\mathbf{1}$ and $\mathbf{2}$ at room temperature over a period of $12-24 \mathrm{~h}$ to give (Eq. (13)) the acylthiolate complex $\quad \mathrm{Cp} * \operatorname{Ir}\left(\eta^{4}-\mathrm{SC}_{3} \mathrm{H}_{2} \mathrm{MeC}(=\mathrm{O}) \mathrm{Me}\right)$ (14). We also observed [21]

the formation of $\mathbf{1 4}$ in reactions of $\operatorname{Re}_{2}(\mathrm{CO})_{10}$ with $\mathbf{1}$ in THF. Although the source of the oxygen atom in complex $\mathbf{1 2}$ is not clear, it seemed possible that the acylthiolate $\mathbf{1 4}$ was formed as an intermediate that reacted with maleic anhydride to give the final product 12. Indeed, $\mathbf{1 4}$ reacts with maleic anhydride in THF even at lower temperatures (-40° to $20^{\circ} \mathrm{C}$) during a 24 h period to give $\mathbf{1 2}$ in quite high (75%) yield. Thus, $\mathbf{1 4}$ is a likely intermediate in the formation of $\mathbf{1 2}$ in Eq. (12); a possible mechanism for this conversion is shown in Scheme 1. While this mechanism does account for the atom connectivity in $\mathbf{1 2}$, there is no direct evidence to support it, and one can imagine other possible mechanisms. The formation of $\mathbf{1 2}$ again emphasizes the remarkable array of reactions that $\mathbf{1}$ and $\mathbf{2}$ undergo [4].

The ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 2}$ shows two singlets at δ 2.10 and 1.94 ppm for the non-equivalent methyl groups at $C(3)$ and $C(5)$ in Fig. 2. The four non-equivalent $\mathrm{C}-\mathrm{H}$ hydrogens at $\mathrm{C}(1), \mathrm{C}(6), \mathrm{C}(7)$, and $\mathrm{C}(8)$ each

Scheme 1.
occur as doublets, as expected, at $\delta 3.95,3.64,3.50$, and 3.02 ppm . In the structure (Fig. 2) of 12, all of the $\mathrm{C}-\mathrm{C}$ single and $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{O}$ double bond distances are normal [22] except those associated with the original acyl group. Although the acyl carbonyl bond is represented in the drawings of $\mathbf{1 2}$ in Eq. (12) and Scheme 1 as a double bond (in order to make the connectivity easier to visualize), the $\mathrm{C}(2)-\mathrm{O}(1)$ distance $(1.332(7) \AA)$ is very similar to that $(1.34 \AA)[22]$ of a normal $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{O}$ single bond and is significantly longer than a $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{O}$ double bond ($1.20 \AA$), as observed in the anhydride carbonyl groups $(\mathrm{C}(10)=\mathrm{O}(4), 1.205(8) ; \mathrm{C}(9)=\mathrm{O}(2), 1.185(7) \AA$). Thus, $\mathrm{C}(2)-\mathrm{O}(1)$ appears to be largely a single bond. The $\mathrm{C}(4)-\mathrm{O}(1)$ bond $(1.479(7) \AA)$ is long compared to a normal $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{O}$ single bond (1.41 \AA), suggesting a weakened interaction here.
The acyl carbon $C(2)$ is planar, as indicated by the sum (359.6°) of the three angles around it. As noted above, the $\mathrm{C}(2)-\mathrm{O}(1)$ bond is largely a single bond; the $\mathrm{C}(2)-\mathrm{C}(3)$ bond distance $(1.478(9) \AA$) is also a single bond as compared with a normal $\mathrm{C}\left(\mathrm{sp}^{2}\right)-\mathrm{C}\left(\mathrm{sp}^{3}\right)$ distance $(1.50 \AA)$. However, the $\mathrm{C}(1)-\mathrm{C}(2)$ distance (1.404(9)) is short compared to a normal $\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{C}\left(\mathrm{sp}^{2}\right)$ bond $(1.50 \AA)$, but is not as short as a $\mathrm{C}\left(\mathrm{sp}^{2}\right)=\mathrm{C}\left(\mathrm{sp}^{2}\right)$ double bond ($1.34 \AA$), suggesting some double bond (or strong σ-bond) character between $\mathrm{C}(1)$ and $\mathrm{C}(2)$. As $\mathrm{C}(1)$ is bonded to 4 atoms, this is surprising. Perhaps the short $\mathrm{C}(1)-\mathrm{C}(2)$ is related to the distorted geometry around $\mathrm{C}(1)$ for which the sum of the $\operatorname{Ir}-\mathrm{C}(1)-\mathrm{C}(6)$, Ir $-\mathrm{C}(1)-\mathrm{C}(2)$, and $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(6)$ angles is only 300.7° as compared with a normal tetrahedral carbon where this sum would be 328°. The sum of the angles around the other Ir-bonded carbon $\mathrm{C}(8)$ is a more normal 329°. Considering the unusual structural features of the 'acyl group' in 12, it is not clear why the reaction of $\mathbf{1 4}$ with maleic anhydride leads to this surprising product.

4. Supplementary material

Crystallographic data for the structural analyses have been deposited with the Cambridge Crystallographic Data Centre, CCDC Nos 149325, 149326, and 149327 for compounds $\mathbf{3}, \mathbf{1 2}$, and 13. Copies of these data may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (Fax: + 44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk or www.ccdc.cam.ac.uk

Acknowledgements

The authors thank the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences Division, under contract W-7405-Eng-82 with Iowa State University. We also thank the
crystallographers: Dr. L.M. Daniels (Texas A\&M University) for 3, Dr. Victor G. Young Jr, (University of Minnesota) for 12, and Mr Jie Su (Shanghai Institute of Organic Chemistry) for 13.

References

[1] J. Chen, L.M. Daniels, R.J. Angelici, J. Am. Chem. Soc. 112 (1990) 199.
[2] J. Chen, R.J. Angelici, Organometallics 8 (1989) 2277.
[3] J. Chen, R.J. Angelici, Appl. Organomet. Chem. 6 (1992) 479.
[4] J. Chen, R.J. Angelici, Coord. Chem. Rev. 206-207 (2000) 63.
[5] J. Chen, L.M. Daniels, R.J. Angelici, Polyhedron 9 (1990) 1883.
[6] J. Chen, R.J. Angelici, Organometallics 11 (1992) 992.
[7] J. Chen, R.J. Angelici, Organometallics 9 (1990) 849.
[8] J. Chen, R.J. Angelici, Inorg. Chim. Acta 235 (1995) 61.
[9] L.N. Mander, S.P. Sethi, Tetrahedron Lett. 24 (1983) 5425.
[10] S.H. Smallcombe, H.C. Caserio, J. Am. Chem. Soc. 93 (1971) 5826.
[11] shelxs-86, G.M. Sheldrick, Institut für Anorganische Chemie der Universität, Göttingen, Germany.
[12] Shelxtl-Plus, Siemens Analytical X-ray, Inc., Madison WI, USA.
[13] B. Bak, D. Christensen, J. Rastrup-Andersen, E. Tannenbaum, J. Chem. Phys. 25 (1956) 892.
[14] M.D. Fryzuk, X. Gao, K. Joshi, P.A. MacNeil, R.L. Massey, J. Am. Chem. Soc. 115 (1993) 10581.
[15] S. Luo, T.B. Rauchfuss, S.R. Wilson, J. Am. Chem. Soc. 114 (1992) 8515.
[16] S. Luo, T.B. Rauchfuss, Z. Gau, J. Am. Chem. Soc. 115 (1993) 4943.
[17] J.W. Hachgenei, R.J. Angelici, J. Organomet. Chem. 355 (1988) 359.
[18] G.H. Spies, R.J. Angelici, Organometallics 6 (1987) 1897.
[19] (a) A. Millan, P.M. Bailey, P.M. Maitlis, J. Chem. Soc. Dalton Trans. (1982) 73. (b) M.R. Churchill, S.A. Julis, Inorg. Chem. 18 (1979) 1215.
[20] S. Luo, A.E. Skaugset, T.B. Rauchfuss, S.R. Wilson, J. Am. Chem. Soc. 114 (1992) 1732.
[21] J. Chen, Jr., V.G. Young, R.J. Angelici, Organometallics 15 (1996) 2727.
[22] J. March, Advanced Organic Chemistry, third ed., Wiley, New York, 1985, p. 19.

[^0]: * Corresponding author. Tel.: +1-515-2942603; fax: + 1-5152940105.

 E-mail address: angelici@iastate.edu (R.J. Angelici).
 ${ }^{1}$ Permanent address: Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, People's Republic of China.

[^1]: ${ }^{\text {a }} R=\Sigma| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right|$.
 ${ }^{\mathrm{b}} R_{w}=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\left|F_{\mathrm{c}}\right|\right)^{2} / \Sigma w\left|F_{\mathrm{o}}\right|^{2}\right]^{1 / 2} ; w=1 / \sigma^{2}\left(\left|F_{\mathrm{o}}\right|\right)$.
 ${ }^{\text {c }}$ Quality of "fit" $=\left[\Sigma w\left(\left|F_{\mathrm{o}}\right|-\mid F_{\mathrm{c}}\right)^{2} /\left(N_{\text {obs }}-N_{\text {parameters }}\right)\right]^{1 / 2}$.

